Pytorch nn.Linear different output fir same input

For learning purposes, I'm trying to build a simple perceptron with pytorch which should not be trained but just give the output for set weights. Here's the code:

import torch.nn
from torch import tensor

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = torch.nn.Linear(3,1)
        self.relu = torch.nn.ReLU()
        # force weights to equal one
        with torch.no_grad():
            self.fc1.weight = torch.nn.Parameter(torch.ones_like(self.fc1.weight))

    def forward(self, x):
        x = self.fc1(x)
        output = self.relu(x)
        return output

net = Net()
test_tensor = tensor([1, 1, 1])
print(net(test_tensor.float()).item())

I expect this single layer neural network to output 3. And that is roughly(!) the output for every execution, but it ranges from 2.5 to 3.5. Where does randomness enter the model?



from Recent Questions - Stack Overflow https://ift.tt/3jaZa3L
https://ift.tt/eA8V8J

Comments

Popular posts from this blog

Today Walkin 14th-Sept

Spring Elasticsearch Operations

Hibernate Search - Elasticsearch with JSON manipulation