Use fillna() and lambda function in Pandas to replace NaN values
I'm trying to write fillna() or a lambda function in Pandas that checks if 'user_score' column is a NaN and if so, uses column's data from another DataFrame. I tried two options:
games_data['user_score'].fillna(
genre_score[games_data['genre']]['user_score']
if np.isnan(games_data['user_score'])
else games_data['user_score'],
inplace = True
)
# but here is 'ValueError: The truth value of a Series is ambiguous'
and
games_data['user_score'] = games_data.apply(
lambda row:
genre_score[row['genre']]['user_score']
if np.isnan(row['user_score'])
else row['user_score'],
axis=1
)
# but here is 'KeyError' with another column from games_data
My dataframes:
games_data
genre_score
I will be glad for any help!
from Recent Questions - Stack Overflow https://ift.tt/3w9t9wQ
https://ift.tt/3u8TSYN
Comments
Post a Comment