Need to extract the data based on delimiter and map to data frame in pyspark
Need to extract the data with ~~ delimiter and map accordingly to the required columns.
But the output somehow is randomly assigning and getting wrong results/mappings. How can we achieve this using pyspark.
Sample Date: MESSAGE from Dataframe column {5:~~:2016:ABCDEF123~~:2323:002~~:2016:567~~::555:~~XXABC~~:2016:123~~:555:~~YYYYY~~-} {5:~~:2016:DEF~~:2323:009~~:2016:666~~::555:~~ZZZZ~~:2016:788~~:555:~~DDDDD~~:2016:5013~~:555:~~TTTTTTTT~~-}
Expected Data Frame Output:
PARENT_REF|PARENT_TXN||CHILD_REF|_CHILD_ORG
ABCDEF123|002|567|XXABC
ABCDEF123|002|123|YYYYY
DEF|009|666|ZZZZ
DEF|009|788|DDDDD
DEF|009|5013|TTTTTTTT
First 2016 is PARENT_REF First 2323 is Parent TXN Subsequent 2016 is child Ref Susequent 555 is Child org
Note - Child records can vary for a parent Record
Code Snippet: from pyspark.sql import functions as F
df2=df1.select("MESSAGE")
df3=df2.withColumn("PARENT_REF",F.regexp_extract(F.col('MESSAGE'),'{5::.:2016:(.?)~~:"',1)) .withColumn("PARENT_TXN",F.regexp_extract(F.col('MESSAGE'),'{5::.:2323:(.?)~~:"',1)) .withColumn("CHILD_REF",F.regexp_extract(F.col('MESSAGE'),'{5::.:2016:(.?)~~:"',1)) .withColumn("CHILD_ORG",F.regexp_extract(F.col('MESSAGE'),'{5::.:555:(.?)~~:"',1))
df3.show()
Comments
Post a Comment