How to reduce processing time of a code in R

Can you help me think of some way to reduce the computational time of a code that generates a certain value, which in this case I call coef, which will depend on id/date/category? Better explanations below.

I made two functions that generate the same result. As you can see in benchmark, the first function (return_values) takes twice as long as the second function (return_valuesX) to generate the same results. See that in the second function, I make some brief changes when calculating the coef variable. However, I strongly believe that there is a possibility of improving the code, as you can see in the second function, I managed to improve 50% of processing time compared to the first just with brief changes. But I'm out of ideas for new adjustments, so I would like your valuable opinion.

Code Explanations:

In general, the purpose of the code is to calculate a value, which I call a coef for each group of id, date and category. For this, the median of the values ​​resulting from the subtraction between DR1 and the values ​​of the DRM0 columns of the df1 database is first calculated. After obtaining the median (med variable), I add the values ​​found with the values ​​of the DRM0 columns of my df1 database. This calculation is my SPV variable. In both cases, I used the data.table function, which I believe is faster than using dplyr. After I get SPV, I need to calculate the coef variable for each id/date/category.

Below I will insert an example real easy to understand of the coef calculation. If for example I want to calculate coef of idd<-"3", dmda<-"2021-12-03", CategoryChosse<-"ABC", and I have the following:

> SPV %>% filter(Id==idd, date2 == ymd(dmda), Category == CategoryChosse)

 Id      date1      date2   Week Category DRM001_PV DRM002_PV DRM003_PV DRM004_PV DRM005_PV DRM006_PV DRM007_PV DRM008_PV DRM009_PV DRM010_PV DRM011_PV DRM012_PV
1:  3 2021-12-01 2021-12-03 Monday      ABC        -3       374       198        17       537       -54       330      -136      -116       534        18      -199
   DRM013_PV DRM014_PV DRM015_PV DRM016_PV DRM017_PV DRM018_PV DRM019_PV DRM020_PV DRM021_PV DRM022_PV DRM023_PV DRM024_PV DRM025_PV DRM026_PV DRM027_PV DRM028_PV
1:       106       106       349        76       684       390       218       146       141        20       435       218       372       321       218       218
   DRM029_PV DRM030_PV DRM031_PV DRM032_PV DRM033_PV DRM034_PV DRM035_PV DRM036_PV DRM037_PV DRM038_PV DRM039_PV DRM040_PV DRM041_PV DRM042_PV DRM043_PV DRM044_PV
1:        55       455        46       411       262       449       325       467        43      -114       191       167        63      -123       252       218
   DRM045_PV DRM046_PV DRM047_PV DRM048_PV DRM049_PV DRM050_PV DRM051_PV DRM052_PV DRM053_PV DRM054_PV DRM055_PV DRM056_PV DRM057_PV DRM058_PV DRM059_PV DRM060_PV
1:       305       420      -296       596       200       218       190       203       607       218       442       -72       463       129       -39       333
   DRM061_PV DRM062_PV DRM063_PV DRM064_PV DRM065_PV DRM066_PV DRM067_PV DRM068_PV DRM069_PV DRM070_PV DRM071_PV DRM072_PV DRM073_PV DRM074_PV DRM075_PV DRM076_PV
1:       -26       160       -91       326       218       369       317       476       224        61       195       613       342       218       204       521
   DRM077_PV DRM078_PV DRM079_PV DRM080_PV DRM081_PV DRM082_PV DRM083_PV DRM084_PV DRM085_PV DRM086_PV DRM087_PV DRM088_PV DRM089_PV DRM090_PV DRM091_PV DRM092_PV
1:       588       218       449       340        51       508       -72        42       492       510       328       818      -132      -105       210      -102
   DRM093_PV DRM094_PV DRM095_PV DRM096_PV DRM097_PV DRM098_PV DRM099_PV DRM0100_PV DRM0101_PV DRM0102_PV DRM0103_PV DRM0104_PV DRM0105_PV DRM0106_PV DRM0107_PV
1:      -137        94       639       265       -64       512        32        -53        414        340        -16        471        434        150        267
   DRM0108_PV DRM0109_PV DRM0110_PV DRM0111_PV DRM0112_PV DRM0113_PV DRM0114_PV DRM0115_PV DRM0116_PV DRM0117_PV DRM0118_PV DRM0119_PV DRM0120_PV DRM0121_PV DRM0122_PV
1:        383       -162        434       -134        -39        450        212        146        -26          8        222        341        601        239         57
   DRM0123_PV DRM0124_PV DRM0125_PV DRM0126_PV DRM0127_PV DRM0128_PV DRM0129_PV DRM0130_PV DRM0131_PV DRM0132_PV DRM0133_PV DRM0134_PV DRM0135_PV DRM0136_PV DRM0137_PV
1:        484        239        502        415        504         62        487        168        101        319        365         37        218        -50        230
   DRM0138_PV DRM0139_PV DRM0140_PV DRM0141_PV DRM0142_PV DRM0143_PV DRM0144_PV DRM0145_PV DRM0146_PV DRM0147_PV DRM0148_PV DRM0149_PV DRM0150_PV DRM0151_PV DRM0152_PV
1:        493        159        150        132         58         21        468        -81         27        345        107        148        -66       -146       -185
   DRM0153_PV DRM0154_PV DRM0155_PV DRM0156_PV DRM0157_PV DRM0158_PV DRM0159_PV DRM0160_PV DRM0161_PV DRM0162_PV DRM0163_PV DRM0164_PV DRM0165_PV DRM0166_PV DRM0167_PV
1:        -14        562         68        140        353        120        130        301         76        441        218        370        218        378        -22
   DRM0168_PV DRM0169_PV DRM0170_PV DRM0171_PV DRM0172_PV DRM0173_PV DRM0174_PV DRM0175_PV DRM0176_PV DRM0177_PV DRM0178_PV DRM0179_PV DRM0180_PV DRM0181_PV DRM0182_PV
1:       -279        563        628        600        152        218        445        246        420         94        495        509        356        183        326
   DRM0183_PV DRM0184_PV DRM0185_PV DRM0186_PV DRM0187_PV DRM0188_PV DRM0189_PV DRM0190_PV DRM0191_PV DRM0192_PV DRM0193_PV DRM0194_PV DRM0195_PV DRM0196_PV DRM0197_PV
1:        493       -190        -65       -123        376        357        473        112        -69        471        452        221        165        -44         87
   DRM0198_PV DRM0199_PV DRM0200_PV DRM0201_PV DRM0202_PV DRM0203_PV DRM0204_PV DRM0205_PV DRM0206_PV DRM0207_PV DRM0208_PV DRM0209_PV DRM0210_PV DRM0211_PV DRM0212_PV
1:        239        285        521        -65        158        223        160        223        269         57        218        218        102        329        218
   DRM0213_PV DRM0214_PV DRM0215_PV DRM0216_PV DRM0217_PV DRM0218_PV DRM0219_PV DRM0220_PV DRM0221_PV DRM0222_PV DRM0223_PV DRM0224_PV DRM0225_PV DRM0226_PV DRM0227_PV
1:        769        215        -68        218        347         18        218        547        759        278        -80        -37        629        -16        774
   DRM0228_PV DRM0229_PV DRM0230_PV DRM0231_PV DRM0232_PV DRM0233_PV DRM0234_PV DRM0235_PV DRM0236_PV DRM0237_PV DRM0238_PV DRM0239_PV DRM0240_PV DRM0241_PV DRM0242_PV
1:        364        113       -132         31        536        118        248        385        218        202        218         41         23        218        379
   DRM0243_PV DRM0244_PV DRM0245_PV DRM0246_PV DRM0247_PV DRM0248_PV DRM0249_PV DRM0250_PV DRM0251_PV DRM0252_PV DRM0253_PV DRM0254_PV DRM0255_PV DRM0256_PV DRM0257_PV
1:       -158        462        600        221        218        221        442        218         53        218        176        504        -61         78         68
   DRM0258_PV DRM0259_PV DRM0260_PV DRM0261_PV DRM0262_PV DRM0263_PV DRM0264_PV DRM0265_PV DRM0266_PV DRM0267_PV DRM0268_PV DRM0269_PV DRM0270_PV DRM0271_PV DRM0272_PV
1:        493        403        218        339        299        749        -18        465        686       -215        579        307        366        279         94
   DRM0273_PV DRM0274_PV DRM0275_PV DRM0276_PV DRM0277_PV DRM0278_PV DRM0279_PV DRM0280_PV DRM0281_PV DRM0282_PV DRM0283_PV DRM0284_PV DRM0285_PV DRM0286_PV DRM0287_PV
1:        138         56        459        613        219        400         35        -74        516        218        -80        317        310       -231        229
   DRM0288_PV DRM0289_PV DRM0290_PV DRM0291_PV DRM0292_PV DRM0293_PV DRM0294_PV DRM0295_PV DRM0296_PV DRM0297_PV DRM0298_PV DRM0299_PV DRM0300_PV DRM0301_PV DRM0302_PV
1:        345        -70        619        235        122         61        337       -163        210        586        127       -112        368        365        476
   DRM0303_PV DRM0304_PV DRM0305_PV DRM0306_PV DRM0307_PV DRM0308_PV DRM0309_PV DRM0310_PV DRM0311_PV DRM0312_PV DRM0313_PV DRM0314_PV DRM0315_PV DRM0316_PV DRM0317_PV
1:        240        270        497         97        420       -184        212        -28        151        527        186        -32         60         96        -86
   DRM0318_PV DRM0319_PV DRM0320_PV DRM0321_PV DRM0322_PV DRM0323_PV DRM0324_PV DRM0325_PV DRM0326_PV DRM0327_PV DRM0328_PV DRM0329_PV DRM0330_PV DRM0331_PV DRM0332_PV
1:        454        321        300        552        319        134        -63        622        441        297        507        578        198        360        542
   DRM0333_PV DRM0334_PV DRM0335_PV DRM0336_PV DRM0337_PV DRM0338_PV DRM0339_PV DRM0340_PV DRM0341_PV DRM0342_PV DRM0343_PV DRM0344_PV DRM0345_PV DRM0346_PV DRM0347_PV
1:        153        318         68        763        370        337        633        469        453        146        428        418        169        468        526
   DRM0348_PV DRM0349_PV DRM0350_PV DRM0351_PV DRM0352_PV DRM0353_PV DRM0354_PV DRM0355_PV DRM0356_PV DRM0357_PV DRM0358_PV DRM0359_PV DRM0360_PV DRM0361_PV DRM0362_PV
1:        441        674         21       -182        174        153       -158        268        191        460         10         82        543       -193        218
   DRM0363_PV DRM0364_PV DRM0365_PV
1:       -203        269        479
> SPV %>% filter(Id==idd, date2 == ymd(dmda), Category == CategoryChosse)
   Id      date1      date2   Week Category DRM001_PV DRM002_PV DRM003_PV DRM004_PV DRM005_PV DRM006_PV DRM007_PV DRM008_PV DRM009_PV DRM010_PV DRM011_PV DRM012_PV
1:  3 2021-12-01 2021-12-03 Monday      ABC        -3       374       198        17       537       -54       330      -136      -116       534        18      -199
   DRM013_PV DRM014_PV DRM015_PV DRM016_PV DRM017_PV DRM018_PV DRM019_PV DRM020_PV DRM021_PV DRM022_PV DRM023_PV DRM024_PV DRM025_PV DRM026_PV DRM027_PV DRM028_PV
1:       106       106       349        76       684       390       218       146       141        20       435       218       372       321       218       218
   DRM029_PV DRM030_PV DRM031_PV DRM032_PV DRM033_PV DRM034_PV DRM035_PV DRM036_PV DRM037_PV DRM038_PV DRM039_PV DRM040_PV DRM041_PV DRM042_PV DRM043_PV DRM044_PV
1:        55       455        46       411       262       449       325       467        43      -114       191       167        63      -123       252       218
   DRM045_PV DRM046_PV DRM047_PV DRM048_PV DRM049_PV DRM050_PV DRM051_PV DRM052_PV DRM053_PV DRM054_PV DRM055_PV DRM056_PV DRM057_PV DRM058_PV DRM059_PV DRM060_PV
1:       305       420      -296       596       200       218       190       203       607       218       442       -72       463       129       -39       333
   DRM061_PV DRM062_PV DRM063_PV DRM064_PV DRM065_PV DRM066_PV DRM067_PV DRM068_PV DRM069_PV DRM070_PV DRM071_PV DRM072_PV DRM073_PV DRM074_PV DRM075_PV DRM076_PV
1:       -26       160       -91       326       218       369       317       476       224        61       195       613       342       218       204       521
   DRM077_PV DRM078_PV DRM079_PV DRM080_PV DRM081_PV DRM082_PV DRM083_PV DRM084_PV DRM085_PV DRM086_PV DRM087_PV DRM088_PV DRM089_PV DRM090_PV DRM091_PV DRM092_PV
1:       588       218       449       340        51       508       -72        42       492       510       328       818      -132      -105       210      -102
   DRM093_PV DRM094_PV DRM095_PV DRM096_PV DRM097_PV DRM098_PV DRM099_PV DRM0100_PV DRM0101_PV DRM0102_PV DRM0103_PV DRM0104_PV DRM0105_PV DRM0106_PV DRM0107_PV
1:      -137        94       639       265       -64       512        32        -53        414        340        -16        471        434        150        267
   DRM0108_PV DRM0109_PV DRM0110_PV DRM0111_PV DRM0112_PV DRM0113_PV DRM0114_PV DRM0115_PV DRM0116_PV DRM0117_PV DRM0118_PV DRM0119_PV DRM0120_PV DRM0121_PV DRM0122_PV
1:        383       -162        434       -134        -39        450        212        146        -26          8        222        341        601        239         57
   DRM0123_PV DRM0124_PV DRM0125_PV DRM0126_PV DRM0127_PV DRM0128_PV DRM0129_PV DRM0130_PV DRM0131_PV DRM0132_PV DRM0133_PV DRM0134_PV DRM0135_PV DRM0136_PV DRM0137_PV
1:        484        239        502        415        504         62        487        168        101        319        365         37        218        -50        230
   DRM0138_PV DRM0139_PV DRM0140_PV DRM0141_PV DRM0142_PV DRM0143_PV DRM0144_PV DRM0145_PV DRM0146_PV DRM0147_PV DRM0148_PV DRM0149_PV DRM0150_PV DRM0151_PV DRM0152_PV
1:        493        159        150        132         58         21        468        -81         27        345        107        148        -66       -146       -185
   DRM0153_PV DRM0154_PV DRM0155_PV DRM0156_PV DRM0157_PV DRM0158_PV DRM0159_PV DRM0160_PV DRM0161_PV DRM0162_PV DRM0163_PV DRM0164_PV DRM0165_PV DRM0166_PV DRM0167_PV
1:        -14        562         68        140        353        120        130        301         76        441        218        370        218        378        -22
   DRM0168_PV DRM0169_PV DRM0170_PV DRM0171_PV DRM0172_PV DRM0173_PV DRM0174_PV DRM0175_PV DRM0176_PV DRM0177_PV DRM0178_PV DRM0179_PV DRM0180_PV DRM0181_PV DRM0182_PV
1:       -279        563        628        600        152        218        445        246        420         94        495        509        356        183        326
   DRM0183_PV DRM0184_PV DRM0185_PV DRM0186_PV DRM0187_PV DRM0188_PV DRM0189_PV DRM0190_PV DRM0191_PV DRM0192_PV DRM0193_PV DRM0194_PV DRM0195_PV DRM0196_PV DRM0197_PV
1:        493       -190        -65       -123        376        357        473        112        -69        471        452        221        165        -44         87
   DRM0198_PV DRM0199_PV DRM0200_PV DRM0201_PV DRM0202_PV DRM0203_PV DRM0204_PV DRM0205_PV DRM0206_PV DRM0207_PV DRM0208_PV DRM0209_PV DRM0210_PV DRM0211_PV DRM0212_PV
1:        239        285        521        -65        158        223        160        223        269         57        218        218        102        329        218
   DRM0213_PV DRM0214_PV DRM0215_PV DRM0216_PV DRM0217_PV DRM0218_PV DRM0219_PV DRM0220_PV DRM0221_PV DRM0222_PV DRM0223_PV DRM0224_PV DRM0225_PV DRM0226_PV DRM0227_PV
1:        769        215        -68        218        347         18        218        547        759        278        -80        -37        629        -16        774
   DRM0228_PV DRM0229_PV DRM0230_PV DRM0231_PV DRM0232_PV DRM0233_PV DRM0234_PV DRM0235_PV DRM0236_PV DRM0237_PV DRM0238_PV DRM0239_PV DRM0240_PV DRM0241_PV DRM0242_PV
1:        364        113       -132         31        536        118        248        385        218        202        218         41         23        218        379
   DRM0243_PV DRM0244_PV DRM0245_PV DRM0246_PV DRM0247_PV DRM0248_PV DRM0249_PV DRM0250_PV DRM0251_PV DRM0252_PV DRM0253_PV DRM0254_PV DRM0255_PV DRM0256_PV DRM0257_PV
1:       -158        462        600        221        218        221        442        218         53        218        176        504        -61         78         68
   DRM0258_PV DRM0259_PV DRM0260_PV DRM0261_PV DRM0262_PV DRM0263_PV DRM0264_PV DRM0265_PV DRM0266_PV DRM0267_PV DRM0268_PV DRM0269_PV DRM0270_PV DRM0271_PV DRM0272_PV
1:        493        403        218        339        299        749        -18        465        686       -215        579        307        366        279         94
   DRM0273_PV DRM0274_PV DRM0275_PV DRM0276_PV DRM0277_PV DRM0278_PV DRM0279_PV DRM0280_PV DRM0281_PV DRM0282_PV DRM0283_PV DRM0284_PV DRM0285_PV DRM0286_PV DRM0287_PV
1:        138         56        459        613        219        400         35        -74        516        218        -80        317        310       -231        229
   DRM0288_PV DRM0289_PV DRM0290_PV DRM0291_PV DRM0292_PV DRM0293_PV DRM0294_PV DRM0295_PV DRM0296_PV DRM0297_PV DRM0298_PV DRM0299_PV DRM0300_PV DRM0301_PV DRM0302_PV
1:        345        -70        619        235        122         61        337       -163        210        586        127       -112        368        365        476
   DRM0303_PV DRM0304_PV DRM0305_PV DRM0306_PV DRM0307_PV DRM0308_PV DRM0309_PV DRM0310_PV DRM0311_PV DRM0312_PV DRM0313_PV DRM0314_PV DRM0315_PV DRM0316_PV DRM0317_PV
1:        240        270        497         97        420       -184        212        -28        151        527        186        -32         60         96        -86
   DRM0318_PV DRM0319_PV DRM0320_PV DRM0321_PV DRM0322_PV DRM0323_PV DRM0324_PV DRM0325_PV DRM0326_PV DRM0327_PV DRM0328_PV DRM0329_PV DRM0330_PV DRM0331_PV DRM0332_PV
1:        454        321        300        552        319        134        -63        622        441        297        507        578        198        360        542
   DRM0333_PV DRM0334_PV DRM0335_PV DRM0336_PV DRM0337_PV DRM0338_PV DRM0339_PV DRM0340_PV DRM0341_PV DRM0342_PV DRM0343_PV DRM0344_PV DRM0345_PV DRM0346_PV DRM0347_PV
1:        153        318         68        763        370        337        633        469        453        146        428        418        169        468        526
   DRM0348_PV DRM0349_PV DRM0350_PV DRM0351_PV DRM0352_PV DRM0353_PV DRM0354_PV DRM0355_PV DRM0356_PV DRM0357_PV DRM0358_PV DRM0359_PV DRM0360_PV DRM0361_PV DRM0362_PV
1:        441        674         21       -182        174        153       -158        268        191        460         10         82        543       -193        218
   DRM0363_PV DRM0364_PV DRM0365_PV
1:       -203        269        479
 
        

So coef will be ymd(dmda) - ymd(min(df1$date1)). That is, if I do to this id/date/category that I mentioned I get a difference of 2 days, so the value I want is the DRM003_PV . So the value for this case is 198. Therefore, I made:

coef<-SPV %>%
    filter(Id==idd, date2 == ymd(dmda), Category == CategoryChosse) %>%
    pull(as.numeric(ymd(dmda)-ymd(min(df1$date1)))+6)
> coef
[1] 198

This issue has been resolved here: Adjust code to choose a specific column depending on the difference between dates

Libraries and database

library(tidyverse)
library(lubridate)
library(data.table)
library(bench)

set.seed(123)

df1 <- data.frame( Id = rep(1:5, length=800),
                   date1 =  as.Date( "2021-12-01"),
                   date2= rep(seq( as.Date("2021-01-01"), length.out=400, by=1), each = 2),
                   Category = rep(c("ABC", "EFG"), length.out = 800),
                   Week = rep(c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
                                "Saturday", "Sunday"), length.out = 800),
                   DR1 = sample( 200:250, 800, repl=TRUE),  
                   setNames( replicate(365, { sample(0:800, 800)}, simplify=FALSE),
                             paste0("DRM0", formatC(1:365, width = 2, format = "d", flag = "0"))))

First function

return_values <- function (df1,idd,dmda, CategoryChosse) {
  
  # First idea: Calculate the median of the values resulting from the subtraction between DR1 and the values of the DRM0 columns
  
  dt1 <- as.data.table(df1)
  
  cols <- grep("^DRM0", colnames(dt1), value = TRUE)
  
  med <- 
    dt1[, (paste0(cols, "_PV")) := DR1 - .SD, .SDcols = cols
    ][, lapply(.SD, median), by = .(Id, Category, Week), .SDcols = paste0(cols, "_PV") ]
  
  # Second idea: After obtaining the median, I add the values found with the values of the DRM columns of my df1 database.
  
  f2 <- function(nm, pat) grep(pat, nm, value = TRUE)
  nm1 <- f2(names(df1), "^DRM0\\d+$")
  nm2 <- f2(names(med), "_PV")
  nm3 <- paste0("i.", nm2)
  setDT(df1)[med,(nm2) := Map(`+`, mget(nm1), mget(nm3)), on = .(Id, Category, Week)]
  SPV <- df1[, c('Id','date1', 'date2', 'Week','Category', nm2), with = FALSE]#%>%data.frame
  
  # Third idea: Calculate the coef values
  
  coef<-SPV %>%
    filter(Id==idd, date2 == ymd(dmda), Category == CategoryChosse) %>%
    pull(as.numeric(ymd(dmda)-ymd(min(df1$date1)))+6)
  
  return(coef)
  
}

Results using first function

subset_df1 <- subset(df1, date2 > date1)

a<-subset_df1 %>%
  rowwise %>%
  select(-c(Week,starts_with('DR')))%>%
  mutate(Result=return_values(df1,Id, date2, Category)) %>%
  data.frame()  
    > a
    Id      date1      date2 Category Result
1    1 2021-12-01 2021-12-02      ABC    4.0
2    2 2021-12-01 2021-12-02      EFG  238.0
3    3 2021-12-01 2021-12-03      ABC  198.0
4    4 2021-12-01 2021-12-03      EFG  163.0
5    5 2021-12-01 2021-12-04      ABC  462.0
...........

Second function

return_valuesX <- function (df1,idd,dmda, CategoryChosse) {
  
  # First idea: Calculate the median of the values resulting from the subtraction between DR1 and the values of the DRM columns
  
  dt1 <- as.data.table(df1)
  
  num_to_pull <- as.numeric(ymd(dmda)-ymd(min(df1$date1)))+6

  cols <- grep("^DRM0", colnames(dt1), value = TRUE)[1:num_to_pull]
  
  med <- 
    dt1[, (paste0(cols, "_PV")) := DR1 - .SD, .SDcols = cols
    ][, lapply(.SD, median), by = .(Id, Category, Week), .SDcols = paste0(cols, "_PV") ]
  
  # Second idea: After obtaining the median, I add the values found with the values of the DRM columns of my df1 database.
  
  f2 <- function(nm, pat) grep(pat, nm, value = TRUE)
  nm1 <- f2(names(df1), "^DRM0\\d+$")[1:num_to_pull]
  nm2 <- f2(names(med), "_PV")[1:num_to_pull]
  nm3 <- paste0("i.", nm2)[1:num_to_pull]
  setDT(df1)[med,(nm2) := Map(`+`, mget(nm1), mget(nm3)), on = .(Id, Category, Week)]
  SPV <- df1[, c('Id','date1', 'date2', 'Week','Category', nm2), with = FALSE]#%>%data.frame
  
  # Third idea: Calculate the coef values
  
  coef<-SPV %>%
    filter(Id==idd, date2 == ymd(dmda), Category == CategoryChosse) %>%
    pull(num_to_pull)
  
  return(coef)
  
}

Results using second function

b<-subset_df1 %>%
  rowwise %>%
  select(-c(Week,starts_with('DR')))%>%
  mutate(Result = return_valuesX(df1,Id, date2, Category)) %>%
  data.frame()
> b
    Id      date1      date2 Category Result
1    1 2021-12-01 2021-12-02      ABC    4.0
2    2 2021-12-01 2021-12-02      EFG  238.0
3    3 2021-12-01 2021-12-03      ABC  198.0
4    4 2021-12-01 2021-12-03      EFG  163.0
5    5 2021-12-01 2021-12-04      ABC  462.0
...............

Comparing the two results:

identical(a, b)
[1] TRUE

Calculate processing time using benchmark

subset_df1 <- subset(df1, date2 > date1)

 
bench::mark(a=subset_df1 %>%
              rowwise %>%
              select(-c(Week,starts_with('DR')))%>%
              mutate(Result=return_values(df1,Id, date2, Category)),

            b=subset_df1 %>% 
              rowwise %>%
              select(-c(Week,starts_with('DR')))%>%
              mutate(Result=return_valuesX(df1,Id, date2, Category)),iterations = 1)


 # A tibble: 2 x 13
expression      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result                 memory                   time           gc              
  <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list>                 <list>                   <list>         <list>          
1 a             53.7s    53.7s    0.0186    4.54GB    0.634     1    34      53.7s <rowwise_df [130 x 5]> <Rprofmem [981,580 x 3]> <bench_tm [1]> <tibble [1 x 3]>
2 b               21s      21s    0.0477  913.77MB    0.382     1     8        21s <rowwise_df [130 x 5]> <Rprofmem [278,340 x 3]> <bench_tm [1]> <tibble [1 x 3]>

To check df1 database enter image description here



Comments

Popular posts from this blog

Today Walkin 14th-Sept

Spring Elasticsearch Operations

Hibernate Search - Elasticsearch with JSON manipulation