RuntimeError: GET was unable to find an engine to execute this computation when I using Trainer.train() from hungingface

RuntimeError                              Traceback (most recent call last)
Input In [46], in <cell line: 1>()
----> 1 train_results = trainer.train()
      2 wandb.finish()

File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1543, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)
   1538     self.model_wrapped = self.model
   1540 inner_training_loop = find_executable_batch_size(
   1541     self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
   1542 )
-> 1543 return inner_training_loop(
   1544     args=args,
   1545     resume_from_checkpoint=resume_from_checkpoint,
   1546     trial=trial,
   1547     ignore_keys_for_eval=ignore_keys_for_eval,
   1548 )

File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1791, in Trainer._inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)
   1789         tr_loss_step = self.training_step(model, inputs)
   1790 else:
-> 1791     tr_loss_step = self.training_step(model, inputs)
   1793 if (
   1794     args.logging_nan_inf_filter
   1795     and not is_torch_tpu_available()
   1796     and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
   1797 ):
   1798     # if loss is nan or inf simply add the average of previous logged losses
   1799     tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)

File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:2539, in Trainer.training_step(self, model, inputs)
   2536     return loss_mb.reduce_mean().detach().to(self.args.device)
   2538 with self.compute_loss_context_manager():
-> 2539     loss = self.compute_loss(model, inputs)
   2541 if self.args.n_gpu > 1:
   2542     loss = loss.mean()  # mean() to average on multi-gpu parallel training

File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:2571, in Trainer.compute_loss(self, model, inputs, return_outputs)
   2569 else:
   2570     labels = None
-> 2571 outputs = model(**inputs)
   2572 # Save past state if it exists
   2573 # TODO: this needs to be fixed and made cleaner later.
   2574 if self.args.past_index >= 0:

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
   1496 # If we don't have any hooks, we want to skip the rest of the logic in
   1497 # this function, and just call forward.
   1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1499         or _global_backward_pre_hooks or _global_backward_hooks
   1500         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501     return forward_call(*args, **kwargs)
   1502 # Do not call functions when jit is used
   1503 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/conda/lib/python3.10/site-packages/transformers/models/swinv2/modeling_swinv2.py:1274, in Swinv2ForImageClassification.forward(self, pixel_values, head_mask, labels, output_attentions, output_hidden_states, return_dict)
   1266 r"""
   1267 labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
   1268     Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
   1269     config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
   1270     `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
   1271 """
   1272 return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-> 1274 outputs = self.swinv2(
   1275     pixel_values,
   1276     head_mask=head_mask,
   1277     output_attentions=output_attentions,
   1278     output_hidden_states=output_hidden_states,
   1279     return_dict=return_dict,
   1280 )
   1282 pooled_output = outputs[1]
   1284 logits = self.classifier(pooled_output)

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
   1496 # If we don't have any hooks, we want to skip the rest of the logic in
   1497 # this function, and just call forward.
   1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1499         or _global_backward_pre_hooks or _global_backward_hooks
   1500         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501     return forward_call(*args, **kwargs)
   1502 # Do not call functions when jit is used
   1503 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/conda/lib/python3.10/site-packages/transformers/models/swinv2/modeling_swinv2.py:1076, in Swinv2Model.forward(self, pixel_values, bool_masked_pos, head_mask, output_attentions, output_hidden_states, return_dict)
   1069 # Prepare head mask if needed
   1070 # 1.0 in head_mask indicate we keep the head
   1071 # attention_probs has shape bsz x n_heads x N x N
   1072 # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
   1073 # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
   1074 head_mask = self.get_head_mask(head_mask, len(self.config.depths))
-> 1076 embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
   1078 encoder_outputs = self.encoder(
   1079     embedding_output,
   1080     input_dimensions,
   (...)
   1084     return_dict=return_dict,
   1085 )
   1087 sequence_output = encoder_outputs[0]

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
   1496 # If we don't have any hooks, we want to skip the rest of the logic in
   1497 # this function, and just call forward.
   1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1499         or _global_backward_pre_hooks or _global_backward_hooks
   1500         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501     return forward_call(*args, **kwargs)
   1502 # Do not call functions when jit is used
   1503 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/conda/lib/python3.10/site-packages/transformers/models/swinv2/modeling_swinv2.py:295, in Swinv2Embeddings.forward(self, pixel_values, bool_masked_pos)
    292 def forward(
    293     self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None
    294 ) -> Tuple[torch.Tensor]:
--> 295     embeddings, output_dimensions = self.patch_embeddings(pixel_values)
    296     embeddings = self.norm(embeddings)
    297     batch_size, seq_len, _ = embeddings.size()

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
   1496 # If we don't have any hooks, we want to skip the rest of the logic in
   1497 # this function, and just call forward.
   1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1499         or _global_backward_pre_hooks or _global_backward_hooks
   1500         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501     return forward_call(*args, **kwargs)
   1502 # Do not call functions when jit is used
   1503 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/conda/lib/python3.10/site-packages/transformers/models/swinv2/modeling_swinv2.py:353, in Swinv2PatchEmbeddings.forward(self, pixel_values)
    351 # pad the input to be divisible by self.patch_size, if needed
    352 pixel_values = self.maybe_pad(pixel_values, height, width)
--> 353 embeddings = self.projection(pixel_values)
    354 _, _, height, width = embeddings.shape
    355 output_dimensions = (height, width)

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
   1496 # If we don't have any hooks, we want to skip the rest of the logic in
   1497 # this function, and just call forward.
   1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1499         or _global_backward_pre_hooks or _global_backward_hooks
   1500         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501     return forward_call(*args, **kwargs)
   1502 # Do not call functions when jit is used
   1503 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py:463, in Conv2d.forward(self, input)
    462 def forward(self, input: Tensor) -> Tensor:
--> 463     return self._conv_forward(input, self.weight, self.bias)

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py:459, in Conv2d._conv_forward(self, input, weight, bias)
    455 if self.padding_mode != 'zeros':
    456     return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
    457                     weight, bias, self.stride,
    458                     _pair(0), self.dilation, self.groups)
--> 459 return F.conv2d(input, weight, bias, self.stride,
    460                 self.padding, self.dilation, self.groups)

RuntimeError: GET was unable to find an engine to execute this computation

I'm not sure that what happen basically this error NOT show when I run my pipeline but a few day ago is appear. How to fix them

Swintransformer from hunggingface : 'microsoft/swinv2-tiny-patch4-window8-256' from transformers import AutoModelForImageClassification, AutoImageProcessor

!pip install transformers==4.26.0 !pip3 install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu117 !pip install tensorflow --upgrade

How to fix them to working NOT error.........



Comments

Popular posts from this blog

Today Walkin 14th-Sept

Spring Elasticsearch Operations

Hibernate Search - Elasticsearch with JSON manipulation