Maximize sum by selecting M elements from the start or end of rows of a Matrix

Given a 2D array Blocks[][] consisting of N rows of variable length. The task is to select at most M elements with maximum possible sum from Blocks[][] from either the start or end of a row.

Examples:

Input: N = 3, M = 4
            Blocks[][] = {{2, 3, 5}, {-1, 7}, {8, 10}}
Output: 30
Explanation:
Select {5} from 1st row.
Select {7} from 2nd row.
Select {8, 10} from 3rd row.

Input: N = 3, M = 2 
            Blocks[][] = {{100, 3, -1}, {-1, 7, 10}, {8, 10, 15}}
Output: 115
Explanation: 
select {100} from 1st row.
Skip 2nd row.
Select {15} from 3rd row.

Naive Approach: The simplest approach is to iterate through all the rows of the matrix and push all the elements into a vector and sort it. Calculate the sum of last M elements and print it as the required answer.

Time Complexity: O(N * KlogK), where K is the maximum size any block can have.
Auxiliary Space: O(N * K)

Efficient Approach : To optimize the above approach, the idea is to use Dynamic Programming using Memoization. Follow the steps below:

Given N rows and from each row, select any segment from the ith row, say from l to r.
Count of elements in ith row is (r – l + 1) and proceed to the next row.
To calculate the maximum sum, use prefix sum technique in order to calculate the sum.
Initializee a 2D array dp[][], where dp[N][M] stores the maximum sum by selecting at most M elements from N rows.
Consider following two scenarios:
Either skip the current row.
Select any segment from the current row that does not exceed the number of elements selected.
Below is the implementation of the above approach:

// Java program for the above approach 
  
import java.util.*; 
public class GFG { 
  
    // Funtion to selct m elements 
    // having maximum sum 
    public static long 
      mElementsWithMaxSum(long[][] matrix, 
                          int M, int block, 
                          long[][] dp) 
    { 
        // Base case 
        if (block == matrix.length) 
            return 0; 
  
        // If precomputed subproblem occurred 
        if (dp[block][M] != -1) 
            return dp[block][M]; 
  
        // Either skip the current row 
        long ans 
            = mElementsWithMaxSum(matrix, M, 
                                  block + 1, dp); 
  
        // Iterate through all the possible 
        // segments of current row 
        for (int i = 0;  
             i < matrix[block].length; i++) { 
            for (int j = i;  
                 j < matrix[block].length; j++) { 
  
                // Check if it is possible to select 
                // elements from i to j 
                if (j - i + 1 <= M) { 
  
                    // Compuete the sum of i to j as 
                    // calculated 
                    ans = Math.max( 
                        ans, 
                        matrix[block][j] 
                            - ((i - 1) >= 0
                            ? matrix[block][i - 1] 
                            : 0) 
                            + mElementsWithMaxSum( 
                                  matrix, M - j + i - 1, 
                                  block + 1, dp)); 
                } 
            } 
        } 
  
        // Store the computed answer and return 
        return dp[block][M] = ans; 
    } 
  
    // Function to precompute the prefix sum 
    // for every row of the matrix 
    public static void 
      preComputing(long[][] matrix, int N) 
    { 
        // Preprocessing to calculate sum from i to j 
        for (int i = 0;  
             i < N; i++) { 
            for (int j = 0;  
                 j < matrix[i].length; j++) { 
                matrix[i][j] 
                    = (j > 0 
                      ? matrix[i][j - 1] : 0) 
                      + matrix[i][j]; 
            } 
        } 
    } 
  
    // Utility function to selct m elements having 
    // maximum sum 
    public static void
    mElementsWithMaxSumUtil(long[][] matrix, 
                            int M, int N) 
    { 
        // Preprocessing step 
        preComputing(matrix, N); 
  
        // Initialize dp array with -1 
        long dp[][] = new long[N + 5][M + 5]; 
        for (long i[] : dp) 
            Arrays.fill(i, -1); 
  
        // Stores maximum sum of M elements 
        long sum = mElementsWithMaxSum(matrix, M, 
                                       0, dp); 
  
        // Print the sum 
        System.out.print(sum); 
    } 
  
    // Driver Code 
    public static void main(String args[]) 
    { 
        // Given N 
        int N = 3; 
  
        // Given M 
        int M = 4; 
  
        // Given matrix 
        long[][] matrix 
            = { { 2, 3, 5 }, { -1, 7 }, 
                { 8, 10 } }; 
  
        // Function Call 
        mElementsWithMaxSumUtil(matrix, M, N); 
    } 
}
Output:
30
Time Complexity: O(N * M)
Auxiliary Space: O(N * M)

Comments

Popular posts from this blog

Today Walkin 14th-Sept

Spring Elasticsearch Operations

Hibernate Search - Elasticsearch with JSON manipulation