How to use a custom function in data.table in R

This is my transaction data. It shows the transactions made from the accounts in from column to the accounts in to column with the date and the amount information

data 

id          from    to          date        amount  
<int>       <chr>   <chr>       <date>      <dbl>
19521       6644    6934        2005-01-01  700.0
19524       6753    8456        2005-01-01  600.0
19523       9242    9333        2005-01-01  1000.0
…           …       …           …           …
1056317     7819    7454        2010-12-31  60.2
1056318     6164    7497        2010-12-31  107.5
1056319     7533    7492        2010-12-31  164.1

I want to calculate closeness centrality measure on the networks of transactions made in the last 6 month prior to the date each particular transaction was made and want to save this information as a new column in the original data.

example data I'll use here is:

structure(list(id = c(83324L, 87614L, 88898L, 89874L, 94765L, 
100277L, 101587L), from = c("5370", "7816", "8046", "5492", "8756", 
"5370", "9254"), to = c("9676", "5370", "5370", "5370", "5370", 
"9105", "5370"), date = structure(c(13391, 13400, 13404, 13409, 
13428, 13452, 13452), class = "Date"), amount = c(261.1, 16400, 
3500, 2700, 19882, 182, 14.6)), row.names = c(NA, -7L), class = "data.frame")

Now, this following code works very well to accomplish this in a small dataset:

library(tnet)
closeness_fnc <- function(data){
  accounts <- data[date == max(date),from]
  id <- data[date == max(date),id]  
  
  # for directed networks
  df <- data %>% group_by(from, to) %>% mutate(weights = sum(amount)) %>% select(from, to, weights) %>% distinct
  cl <- closeness_w(df, directed = T, gconly=FALSE, alpha = 0.5) 
  
  list(
    id = id,
    closeness_directed = cl[,"n.closeness"][accounts]
  )

}

network_data <- data[, closeness_fnc(data[(date >= end_date - 180) & (date <= end_date)]), .(end_date = date)] %>% select(-end_date)
# adding this info into the original data
data <- merge(x = data, y = network_data, by = "id")

So, the output is as I expected:

# data
id      from    to      date        amount  closeness_directed 
<int>   <chr>   <chr>   <date>      <dbl>   <dbl> 
83324   5370    9676    2006-08-31  261.1   1.00000000
87614   7816    5370    2006-09-09  16400.0 0.98744695
88898   8046    5370    2006-09-13  3500.0  0.35329017
89874   5492    5370    2006-09-18  2700.0  0.25176754
94765   8756    5370    2006-10-07  19882.0 0.39233504
100277  5370    9105    2006-10-31  182.0   0.07167582
101587  9254    5370    2006-10-31  14.6    0.02390589

However, since my data has over 1 million rows, this code will take more than a day to complete(it runs for more than 12 hours and hasn't yet finished).

I had a similar running time problem here and I want to apply the same logic to this code. So, I modified my code as follows:

library(tnet)
closeness_fnc <- function(data){
  accounts <- data[date == max(date),from]
  id <- data[date == max(date),id]  
  
  # for directed networks
  df <- data %>% group_by(from, to) %>% mutate(weights = sum(amount)) %>% select(from, to, weights) %>% distinct
  cl <- closeness_w(df, directed = T, gconly=FALSE, alpha = 0.5) 
  
  closeness_directed <- cl[,"n.closeness"][accounts]
  closeness_directed <- as.data.frame(closeness_directed)
  closeness_directed$from <- rownames(closeness_directed)
  rownames(closeness_directed) <- NULL

  return(closeness_directed)
}

# this is the approach given in the link I provided:
setDT(data)[, date_minus_180 := date - 180]
data[, ':=' (closeness_directed = data[data, closeness_fnc(data), 
     on = .(from, date <= date, date >= date_minus_180), by = .EACHI]$closeness_directed
     )] %>% select(-date_minus_180)

however, that won't work obviously since

data[data, closeness_fnc(data), 
     on = .(from, date <= date, date >= date_minus_180), by = .EACHI]

gives the output

from   date         date     closeness_directed      from   
<chr>  <date>      <date>       <dbl>                <chr>

5370    2006-08-31  2006-03-04  0.07167582           5370
5370    2006-08-31  2006-03-04  0.02390589           9254
7816    2006-09-09  2006-03-13  0.07167582           5370
7816    2006-09-09  2006-03-13  0.02390589           9254
8046    2006-09-13  2006-03-17  0.07167582           5370
8046    2006-09-13  2006-03-17  0.02390589           9254
5492    2006-09-18  2006-03-22  0.07167582           5370
5492    2006-09-18  2006-03-22  0.02390589           9254
8756    2006-10-07  2006-04-10  0.07167582           5370
8756    2006-10-07  2006-04-10  0.02390589           9254
1-10 of 14 rows

So, now how can I adjust the code here to solve the problem?

A larger dataset

structure(list(id = c(19521L, 19522L, 19523L, 19524L, 19525L, 
19526L, 19527L, 19528L, 19529L, 19530L, 19531L, 0L, 19532L, 19533L, 
19534L, 21971L, 21972L, 21973L, 21974L, 21975L, 21976L, 21977L, 
21978L, 21979L, 21980L, 21981L, 1L, 21761L, 21762L, 21763L, 21764L, 
21765L, 21766L, 21767L, 21982L, 21983L, 21984L, 21768L, 21769L, 
21770L, 21771L, 21772L, 21773L, 2L, 21774L, 21775L, 21776L, 21777L, 
21778L, 21779L, 21780L, 21781L, 21782L, 3L, 21783L, 21784L, 21785L, 
21786L, 21787L, 21788L, 21789L, 21790L, 21791L, 21792L, 21793L, 
21794L, 21795L, 21796L, 4L, 21797L, 21798L, 21799L, 21800L, 21801L, 
21802L, 21803L, 21804L, 21805L, 21806L, 21807L, 21808L, 21809L, 
21810L, 21811L, 21812L, 21813L, 21814L, 21815L, 5L, 21816L, 21817L, 
21818L, 21819L, 21820L, 21821L, 21822L, 21823L, 21824L, 21825L, 
21826L, 21827L, 21828L, 21829L, 21830L, 6L, 21831L, 21832L, 21833L, 
21834L, 21835L, 21836L, 21837L, 21838L, 7L, 21839L, 21840L, 21841L, 
21842L, 21843L, 21844L, 21845L, 21846L, 21847L, 21848L, 21849L, 
21850L, 21851L, 21852L, 21853L, 21854L, 21855L, 21856L, 21857L, 
8L, 21858L, 21859L, 9L, 10L, 21860L, 21861L, 21862L, 21863L, 
21864L, 21865L, 21866L, 21867L, 21868L, 21869L, 21870L, 21871L, 
21872L, 21873L, 21874L, 21875L, 21876L, 21877L, 21878L, 21879L, 
21880L, 21881L, 21882L, 21883L, 21884L, 21885L, 21886L, 21887L, 
21888L, 21889L, 21890L, 21891L, 21892L, 21893L, 21894L, 21895L, 
21896L, 21897L, 21898L, 21899L, 21900L, 11L, 21901L, 21902L, 
21903L, 21904L, 21905L, 21906L, 21907L, 21908L, 21909L, 12L, 
21910L, 21911L, 21912L, 21913L, 21914L, 21915L, 21916L, 21917L, 
21918L, 21919L, 13L, 21920L, 21921L, 21922L, 21923L, 21924L, 
21925L, 21926L, 21927L, 21928L, 21929L, 21930L, 21931L, 21932L, 
21933L, 21934L, 21935L, 21936L, 14L, 21937L, 21938L, 21939L, 
21940L, 21941L, 21942L, 21957L, 21958L, 21959L, 21960L, 21961L, 
21962L, 21963L, 21964L, 15L, 21965L, 21966L, 21967L, 21968L, 
21969L, 21970L, 21985L, 21986L, 21987L, 21988L, 21989L, 21990L, 
21991L, 21992L, 21993L, 21994L, 21995L, 21996L, 16L, 17L, 21551L, 
21552L, 21553L, 21554L, 21555L, 21556L, 21557L, 21558L, 21559L, 
21560L, 21561L, 21562L, 21563L, 21564L, 21565L, 21566L, 21567L, 
21997L, 21998L, 18L, 21568L, 21569L, 21570L, 21571L, 21572L, 
21573L, 21574L, 21575L, 21576L, 21577L, 21578L, 21579L, 21580L, 
21581L, 19L, 21582L, 21583L, 21584L, 21585L, 21586L, 21587L, 
21588L, 21589L, 21590L, 21591L, 21592L, 20L, 21593L, 21594L, 
21595L, 21596L, 21597L, 21598L, 21599L, 21600L, 21601L, 21602L, 
21603L, 21604L, 21605L, 21606L, 21L, 21607L, 21608L, 21609L, 
21610L, 21611L, 21612L, 21613L, 21614L, 21615L, 21616L, 21617L, 
21618L, 21619L, 21620L, 21621L, 21622L, 21623L, 21624L, 21625L, 
21626L, 22L, 21627L, 21628L, 21629L, 21630L, 21631L, 21632L, 
21633L, 21634L, 21635L, 21636L, 21637L, 21638L, 21639L, 21640L, 
21641L, 21642L, 21643L, 21644L, 21645L, 23L, 21646L, 21647L, 
21648L, 21649L, 21650L, 21651L, 21652L, 21653L, 21654L, 21655L, 
21656L, 21657L, 21658L, 24L, 21659L, 21660L, 21661L, 21662L, 
21663L, 21664L, 21665L, 21666L, 21667L, 21668L, 21669L, 25L, 
21670L, 21671L, 21672L, 21673L, 21674L, 21675L, 21676L, 21677L, 
21678L, 21679L, 21680L, 21681L, 21682L, 21683L, 26L, 21684L, 
21685L, 21686L, 21687L, 21688L, 21689L, 21690L, 21691L, 21692L, 
21693L, 21694L, 21695L, 21696L, 21697L, 21698L, 21699L, 21700L, 
21701L, 21702L, 21703L, 27L, 21704L, 21719L, 21720L, 21721L, 
21722L, 21723L, 21724L, 21725L, 21726L, 21727L, 21728L, 21729L, 
21730L, 21731L, 21732L, 28L, 21733L, 21734L, 21735L, 21736L, 
21737L, 21738L, 21739L, 21740L, 29L, 21741L, 21742L, 21743L, 
21744L, 21745L, 21746L, 21747L, 21748L, 21749L, 21750L, 21751L, 
21752L, 21753L, 21754L, 21755L, 21756L, 21757L, 21758L, 30L, 
31L, 32L, 33L, 34L, 35L, 36L, 37L, 21229L, 21230L, 21231L, 21232L, 
21233L, 21234L, 21235L, 21236L, 21237L, 21238L, 21239L, 21240L, 
21241L, 21242L, 21243L, 21244L, 21245L, 21246L, 21247L, 21248L, 
21249L, 21250L, 21251L, 21252L, 21253L, 21254L, 21255L, 21256L, 
21257L, 21258L), from = c("6644", "9843", "9242", "6753", "7075", 
"8685", "5513", "6340", "6042", "5587", "7237", "5695", "9582", 
"8539", "7939", "9077", "8946", "5591", "8380", "5865", "7867", 
"9457", "6968", "7971", "6150", "9361", "9379", "8409", "9740", 
"7226", "7531", "6752", "7362", "6661", "5730", "5417", "9049", 
"7057", "6252", "9476", "6228", "8896", "7371", "8170", "7122", 
"6694", "5450", "9435", "5619", "8289", "9862", "5504", "6555", 
"9845", "7537", "9482", "6810", "8257", "8490", "6588", "9652", 
"7303", "5852", "5746", "9198", "6917", "8688", "9460", "9640", 
"7054", "8628", "7065", "9006", "6832", "6185", "8422", "6914", 
"7069", "7848", "8436", "5494", "6375", "5653", "8912", "9794", 
"8413", "6527", "9101", "5815", "6923", "8184", "6811", "8130", 
"6539", "8643", "6329", "7744", "8211", "9641", "8003", "5599", 
"8715", "7108", "9573", "8583", "5648", "6444", "5660", "8191", 
"9830", "5931", "7921", "6753", "8314", "7940", "6265", "6604", 
"6509", "5618", "5860", "6469", "9525", "5887", "6626", "7145", 
"6862", "5741", "9144", "9862", "9163", "7297", "7599", "8427", 
"8865", "9418", "8636", "6530", "9155", "6934", "8817", "9028", 
"5521", "5943", "7443", "9557", "8239", "6819", "9761", "5983", 
"6830", "6368", "5381", "8782", "8008", "9160", "9862", "8008", 
"9615", "6920", "6164", "6278", "9729", "8960", "6358", "5939", 
"8902", "9522", "7344", "9070", "6594", "8058", "6639", "7896", 
"6325", "7804", "9554", "9725", "8475", "7746", "7536", "9671", 
"9761", "5415", "6837", "8327", "9061", "8981", "9226", "5862", 
"7085", "8925", "6226", "6849", "8432", "9545", "5837", "5440", 
"9732", "8695", "7690", "5829", "9373", "7977", "6361", "7320", 
"7603", "6303", "7077", "7850", "5792", "9588", "9204", "8648", 
"8950", "7106", "6334", "6843", "7060", "9606", "5520", "9725", 
"9350", "7463", "8130", "7947", "9668", "9490", "6241", "8830", 
"6374", "9528", "7919", "8532", "6795", "6934", "8162", "9275", 
"8106", "8615", "9206", "8283", "6265", "7052", "7737", "8422", 
"7815", "9028", "7932", "6125", "6671", "7800", "9835", "5573", 
"7874", "8931", "6748", "8192", "6822", "6950", "8020", "8555", 
"8986", "7644", "5736", "8421", "6224", "8374", "8304", "9101", 
"8677", "9208", "7008", "6074", "9409", "6269", "9721", "9304", 
"9117", "5420", "9691", "7728", "8422", "8579", "7495", "9838", 
"8139", "9571", "5385", "5454", "9620", "7723", "9249", "7033", 
"7966", "5837", "9844", "5793", "5747", "6362", "6925", "9318", 
"6780", "6934", "7150", "6818", "7246", "5514", "9574", "7838", 
"5540", "6646", "6893", "6417", "8039", "8721", "8763", "6401", 
"6510", "7970", "7117", "6001", "7505", "7646", "5600", "6522", 
"8395", "5601", "5418", "6296", "8790", "7622", "9012", "8165", 
"7624", "5468", "9316", "9030", "7155", "5702", "7492", "8503", 
"9868", "6807", "6404", "9076", "7213", "8735", "7849", "8551", 
"9351", "6693", "6795", "9653", "9504", "6948", "9358", "9280", 
"8168", "5456", "9138", "8420", "9312", "8930", "6375", "8695", 
"7699", "6748", "5506", "9475", "5776", "5517", "5644", "8680", 
"5474", "7534", "9363", "9586", "6508", "6193", "5401", "8032", 
"8461", "9387", "5812", "7564", "5917", "5434", "5794", "7840", 
"9085", "8331", "7060", "7175", "6669", "8896", "6352", "7432", 
"9810", "8776", "6934", "6112", "8869", "8248", "9450", "6974", 
"7264", "7336", "6880", "7866", "7777", "7502", "5615", "9777", 
"7371", "9214", "6374", "6039", "7714", "9056", "8358", "8963", 
"8657", "8846", "9319", "7220", "7764", "8967", "8683", "9137", 
"6971", "9747", "7449", "8259", "5373", "7300", "6273", "8391", 
"7862", "5696", "6622", "5456", "9240", "7021", "7313", "7247", 
"6679", "8102", "6812", "9473", "6345", "7935", "9696", "5541", 
"8939", "5417", "6887", "8998", "7977", "9110", "8666", "6670", 
"8975", "7518", "5601", "7549", "7841", "8888", "5808", "9545", 
"9460", "9361", "9807", "6860", "9811", "5935", "8966", "8684", 
"5915", "8892", "8493", "7894", "6342", "6382", "8461", "7833", 
"7201", "7253", "6720", "6175", "9201", "5682", "5473", "7173", 
"6094", "8810", "5874", "6947", "8462", "6885", "6201"), to = c("6934", 
"9115", "9333", "8456", "6510", "7207", "6046", "7047", "6213", 
"9493", "6248", "7468", "8925", "6727", "6912", "6727", "9811", 
"9493", "9251", "6375", "6460", "6375", "8130", "5773", "6510", 
"6951", "6213", "6671", "6153", "6634", "9440", "8220", "8512", 
"8105", "8786", "5773", "6454", "5997", "8374", "7207", "6253", 
"9251", "8456", "7517", "6935", "6143", "8220", "9628", "5837", 
"9115", "6517", "9628", "8078", "6143", "6912", "7047", "6460", 
"7517", "6442", "9333", "6646", "5997", "8395", "6153", "9012", 
"6248", "7468", "8105", "6254", "9811", "7518", "6217", "6951", 
"8551", "9012", "5605", "6671", "7084", "8925", "5985", "8130", 
"5443", "8665", "8657", "8395", "6883", "6334", "8472", "6669", 
"5715", "5409", "8876", "8869", "9450", "5610", "6934", "6043", 
"7253", "6646", "7564", "6934", "5668", "6986", "7382", "6934", 
"8671", "6646", "8336", "9750", "8967", "9137", "8912", "5373", 
"9240", "6934", "8925", "6273", "6566", "6164", "9240", "6145", 
"7247", "7134", "5606", "9682", "5635", "8820", "8763", "7492", 
"5837", "6634", "8323", "6616", "6374", "8678", "7293", "6143", 
"8105", "7843", "6375", "7207", "5997", "9628", "9240", "9811", 
"5837", "8395", "8456", "9811", "9333", "9251", "6153", "6213", 
"6248", "9115", "8925", "6634", "6671", "8130", "6646", "9333", 
"6727", "6510", "6460", "8220", "9493", "9750", "6934", "6912", 
"6951", "7047", "9012", "9750", "5773", "7517", "7468", "8456", 
"7207", "6192", "9131", "6046", "7143", "7047", "6213", "6333", 
"7603", "6248", "9620", "6995", "9770", "5835", "8925", "5614", 
"8846", "8134", "7468", "8887", "8631", "9744", "9251", "6217", 
"6934", "7247", "8697", "6727", "5606", "9664", "6460", "6442", 
"8374", "6334", "9440", "9493", "9845", "7492", "5605", "8078", 
"9202", "6454", "5635", "8657", "8606", "8395", "9037", "5773", 
"6951", "6807", "9770", "8631", "9845", "8512", "6253", "6989", 
"6375", "7248", "8665", "8786", "8887", "5668", "6374", "6883", 
"9519", "8134", "6510", "5443", "6646", "6634", "5373", "7084", 
"6033", "8967", "8105", "9565", "9723", "8925", "7222", "6361", 
"8739", "8739", "6502", "9085", "5980", "5980", "5385", "5773", 
"7001", "9200", "7603", "7471", "9620", "5610", "6794", "9457", 
"8336", "6935", "5409", "5621", "5614", "9664", "7517", "7518", 
"6669", "6517", "6114", "7207", "9628", "9251", "8456", "8078", 
"6935", "6772", "9535", "8869", "7222", "7034", "6986", "6566", 
"8220", "7155", "7446", "9202", "6934", "9333", "6046", "9535", 
"8678", "6273", "6896", "7345", "9115", "8183", "6634", "6254", 
"7471", "9628", "9333", "9457", "9457", "9137", "6043", "8671", 
"6479", "6503", "5715", "7143", "5592", "6912", "7047", "6460", 
"7517", "6143", "9712", "8472", "7382", "6995", "6192", "7518", 
"6145", "8912", "6844", "7253", "7109", "8763", "5997", "5985", 
"6807", "6153", "6329", "7213", "8551", "7564", "7155", "6248", 
"7468", "8105", "5605", "6503", "8820", "5562", "8697", "7109", 
"9811", "6984", "6951", "8323", "9450", "9012", "6616", "5922", 
"9682", "9839", "8041", "5443", "9039", "8178", "7293", "8665", 
"8657", "8846", "7990", "8168", "7646", "8472", "9803", "8041", 
"8879", "9085", "8178", "7624", "8221", "5776", "8422", "9085", 
"8545", "8321", "5473", "6994", "6673", "6934", "7769", "5409", 
"6104", "8876", "7818", "8941", "5610", "7825", "7770", "6043", 
"7253", "8790", "7564", "8178", "8846", "6954", "7382", "6986", 
"6194", "8671", "9741", "5384", "8846", "8653", "6659", "9750", 
"9744", "9138", "9321", "7124", "8912", "5866", "7718", "5468", 
"7321", "6795", "6042", "6566", "6164", "9084", "6507", "9033", 
"6807", "9240", "6540", "6857", "8945", "7134", "5606", "9390", 
"9682", "6359", "8757", "8763", "8280", "7049", "6205", "7604", 
"9729", "7492", "6085", "8239", "6299", "9845", "9240", "8323", 
"6616", "6671", "6669", "8657", "7471", "9744", "5443", "5837", 
"8395", "8551", "8456", "8472", "8374", "5610", "9811", "9682", 
"9333", "9251", "9202", "7603", "6192", "6143", "6153", "6329", 
"6213", "6273", "6248", "7109", "7143", "8041", "8665", "8925", 
"9115", "6634", "6671"), date = structure(c(12784, 12784, 12784, 
12784, 12785, 12785, 12786, 12786, 12786, 12786, 12786, 12787, 
12787, 12787, 12787, 12788, 12788, 12788, 12788, 12789, 12789, 
12790, 12790, 12790, 12790, 12790, 12791, 12791, 12791, 12791, 
12791, 12791, 12791, 12791, 12791, 12791, 12791, 12792, 12792, 
12792, 12792, 12792, 12792, 12793, 12793, 12793, 12793, 12793, 
12794, 12794, 12794, 12794, 12794, 12795, 12795, 12795, 12795, 
12795, 12795, 12795, 12795, 12796, 12796, 12796, 12796, 12796, 
12796, 12796, 12797, 12797, 12797, 12797, 12797, 12797, 12797, 
12797, 12798, 12798, 12799, 12800, 12800, 12800, 12801, 12801, 
12801, 12802, 12802, 12802, 12803, 12803, 12804, 12804, 12804, 
12804, 12804, 12805, 12805, 12805, 12805, 12805, 12806, 12806, 
12806, 12806, 12807, 12807, 12807, 12807, 12807, 12807, 12808, 
12808, 12808, 12809, 12809, 12809, 12809, 12809, 12809, 12809, 
12810, 12810, 12810, 12810, 12810, 12811, 12811, 12811, 12811, 
12812, 12812, 12812, 12812, 12813, 12813, 12813, 12814, 12814, 
12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 
12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 
12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 
12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 
12814, 12814, 12814, 12815, 12815, 12816, 12816, 12816, 12816, 
12816, 12816, 12816, 12816, 12816, 12816, 12817, 12817, 12817, 
12817, 12817, 12817, 12817, 12818, 12818, 12818, 12818, 12819, 
12819, 12819, 12819, 12819, 12819, 12819, 12819, 12819, 12819, 
12819, 12819, 12819, 12819, 12819, 12819, 12819, 12819, 12820, 
12820, 12820, 12820, 12820, 12820, 12820, 12820, 12820, 12820, 
12820, 12820, 12820, 12820, 12820, 12821, 12821, 12821, 12821, 
12821, 12821, 12821, 12821, 12821, 12821, 12821, 12821, 12821, 
12821, 12821, 12821, 12821, 12821, 12821, 12822, 12822, 12822, 
12822, 12822, 12822, 12822, 12822, 12822, 12822, 12822, 12822, 
12822, 12822, 12822, 12822, 12822, 12822, 12822, 12822, 12822, 
12823, 12823, 12823, 12823, 12823, 12823, 12823, 12823, 12823, 
12823, 12823, 12823, 12823, 12823, 12823, 12824, 12824, 12824, 
12824, 12824, 12824, 12824, 12824, 12824, 12824, 12824, 12824, 
12825, 12825, 12825, 12825, 12825, 12825, 12825, 12825, 12825, 
12825, 12825, 12825, 12825, 12825, 12825, 12826, 12826, 12826, 
12826, 12826, 12826, 12826, 12826, 12826, 12826, 12826, 12826, 
12826, 12826, 12826, 12826, 12826, 12826, 12826, 12826, 12826, 
12827, 12827, 12827, 12827, 12827, 12827, 12827, 12827, 12827, 
12827, 12827, 12827, 12827, 12827, 12827, 12827, 12827, 12827, 
12827, 12827, 12828, 12828, 12828, 12828, 12828, 12828, 12828, 
12828, 12828, 12828, 12828, 12828, 12829, 12829, 12830, 12830, 
12830, 12830, 12830, 12830, 12831, 12831, 12831, 12831, 12831, 
12831, 12832, 12832, 12832, 12832, 12832, 12832, 12832, 12832, 
12833, 12833, 12833, 12833, 12833, 12833, 12833, 12834, 12834, 
12834, 12834, 12834, 12834, 12834, 12834, 12834, 12834, 12834, 
12835, 12835, 12835, 12835, 12835, 12836, 12836, 12836, 12836, 
12836, 12837, 12837, 12837, 12837, 12837, 12837, 12837, 12837, 
12837, 12837, 12838, 12838, 12838, 12838, 12838, 12838, 12839, 
12839, 12839, 12839, 12839, 12839, 12839, 12839, 12839, 12840, 
12840, 12840, 12840, 12840, 12840, 12840, 12841, 12841, 12841, 
12841, 12841, 12841, 12841, 12841, 12841, 12841, 12841, 12841, 
12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 
12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 
12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 
12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 
12842, 12842), class = "Date"), amount = c(700, 900, 1000, 600, 
400, 1100, 600, 1100, 200, 800, 1000, 700, 300, 800, 800, 5123, 
400, 3401, 700, 500, 700, 3242, 500, 400, 5298, 900, 11832, 300, 
500, 600, 1100, 600, 300, 800, 400, 6774, 300, 200, 400, 14264, 
900, 13851, 17366, 1000, 800, 700, 6007, 500, 400, 6207, 900, 
12644, 800, 4276, 6434, 14779, 4507, 6446, 800, 17477, 1100, 
5009, 1000, 5718, 800, 13967, 6959, 15914, 200, 4470, 600, 800, 
10737, 700, 44749, 1000, 46552, 500, 13156, 1000, 23323, 1100, 
200, 300, 10792, 200, 400, 700, 200, 700, 1100, 1000, 700, 500, 
1100, 7268, 300, 200, 16125, 400, 14440, 700, 900, 300, 49752, 
200, 36518, 500, 900, 300, 900, 1000, 200, 19961, 21899, 12336, 
1100, 200, 700, 1100, 900, 1100, 800, 600, 400, 200, 500, 200, 
200, 38000, 16983, 1000, 300, 1000, 300, 800, 13.4, 42.7, 34700, 
12.6, 47.5, 13.3, 37.1, 17, 11.1, 15.5, 22.2, 55.8, 11.8, 50.1, 
45, 15.9, 38.8, 38.2, 20.1, 38.9, 7.1, 107.1, 48, 62.4, 2900, 
21.5, 19.1, 14, 19.5, 15.2, 5282, 94.7, 19.4, 28.2, 42.7, 110.2, 
0.8, 23.1, 20, 19.6, 2000, 5100, 1100, 200, 11900, 1100, 5500, 
7500, 1100, 800, 6000, 200, 600, 800, 25300, 45647, 1000, 700, 
600, 7000, 700, 900, 300, 2900, 5224, 30192, 24381, 400, 5123, 
23330, 700, 8500, 3191, 23041, 5029, 6238, 3401, 900, 20213, 
7618, 19935, 600, 5859, 3375, 12817, 500, 38645, 1600, 10600, 
5500, 700, 3217, 14626, 4550, 4356, 6689, 600, 3242, 9612, 5080, 
5039, 12785, 4212, 17632, 3395, 200, 3399, 5298, 14493, 28157, 
1800, 31348, 5544, 14100, 33045, 1800, 200, 800, 20066, 400, 
1000, 27666, 500, 600, 700, 700, 3151, 1000, 6774, 800, 1500, 
22452, 1100, 44333, 18347, 200, 600, 6242, 13900, 19746, 400, 
48098, 7041, 9100, 10584, 49590, 3021, 500, 14264, 5400, 13851, 
17366, 1200, 5072, 1100, 1100, 47831, 12015, 5200, 8905, 23524, 
6007, 1000, 300, 22349, 31038, 25200, 43737, 12154, 23736, 24863, 
400, 200, 6207, 29700, 14622, 4758, 5810, 12644, 17477, 19588, 
27078, 32594, 25609, 20281, 700, 900, 6310, 14319, 14400, 6434, 
14779, 4507, 6446, 4276, 9600, 13875, 12043, 4391, 4327, 9000, 
6698, 16392, 700, 15263, 1100, 18729, 5009, 3098, 4729, 5718, 
700, 500, 24400, 9658, 14963, 13967, 6959, 15914, 9800, 20567, 
3058, 600, 18497, 6148, 4470, 400, 10737, 15447, 24009, 44749, 
12138, 900, 800, 1000, 900, 4200, 700, 1100, 1300, 8000, 6000, 
29511, 200, 900, 600, 6600, 1100, 44162, 600, 24023, 900, 400, 
200, 300, 800, 33410, 14800, 400, 800, 500, 500, 19136, 33900, 
4100, 10500, 13400, 600, 700, 3700, 1000, 1000, 100, 3300, 800, 
9400, 45925, 41740, 500, 6200, 8000, 200, 3100, 500, 300, 31332, 
62100, 600, 7100, 28361, 4000, 200, 4500, 900, 900, 900, 1000, 
1500, 300, 2500, 2700, 11000, 300, 800, 900, 8900, 23990, 1100, 
1400, 800, 10700, 1800, 1100, 10900, 900, 200, 5200, 800, 200, 
800, 200, 900, 3900, 900, 600, 900, 18.7, 102, 2.9, 3, 39285, 
52.1, 34.1, 18.5, 21.3, 38.3, 160, 110.5, 58.6, 83.4, 34.7, 68.6, 
31, 20.3, 5.4, 89.3, 110.6, 61.5, 72.7, 13.7, 20.7, 25.9, 2.9, 
50.1, 14, 110, 16.2, 39, 73.8, 23.7, 249, 29.6, 117.3, 199)), row.names = c(NA, 
-500L), class = "data.frame")


from Recent Questions - Stack Overflow https://ift.tt/348AqzQ
https://ift.tt/eA8V8J

Comments

Popular posts from this blog

Today Walkin 14th-Sept

Spring Elasticsearch Operations

Hibernate Search - Elasticsearch with JSON manipulation