How to use a custom function in data.table in R
This is my transaction data. It shows the transactions made from the accounts in from
column to the accounts in to
column with the date and the amount information
data
id from to date amount
<int> <chr> <chr> <date> <dbl>
19521 6644 6934 2005-01-01 700.0
19524 6753 8456 2005-01-01 600.0
19523 9242 9333 2005-01-01 1000.0
… … … … …
1056317 7819 7454 2010-12-31 60.2
1056318 6164 7497 2010-12-31 107.5
1056319 7533 7492 2010-12-31 164.1
I want to calculate closeness centrality
measure on the networks of transactions made in the last 6 month prior to the date each particular transaction was made and want to save this information as a new column in the original data.
example data I'll use here is:
structure(list(id = c(83324L, 87614L, 88898L, 89874L, 94765L,
100277L, 101587L), from = c("5370", "7816", "8046", "5492", "8756",
"5370", "9254"), to = c("9676", "5370", "5370", "5370", "5370",
"9105", "5370"), date = structure(c(13391, 13400, 13404, 13409,
13428, 13452, 13452), class = "Date"), amount = c(261.1, 16400,
3500, 2700, 19882, 182, 14.6)), row.names = c(NA, -7L), class = "data.frame")
Now, this following code works very well to accomplish this in a small dataset:
library(tnet)
closeness_fnc <- function(data){
accounts <- data[date == max(date),from]
id <- data[date == max(date),id]
# for directed networks
df <- data %>% group_by(from, to) %>% mutate(weights = sum(amount)) %>% select(from, to, weights) %>% distinct
cl <- closeness_w(df, directed = T, gconly=FALSE, alpha = 0.5)
list(
id = id,
closeness_directed = cl[,"n.closeness"][accounts]
)
}
network_data <- data[, closeness_fnc(data[(date >= end_date - 180) & (date <= end_date)]), .(end_date = date)] %>% select(-end_date)
# adding this info into the original data
data <- merge(x = data, y = network_data, by = "id")
So, the output is as I expected:
# data
id from to date amount closeness_directed
<int> <chr> <chr> <date> <dbl> <dbl>
83324 5370 9676 2006-08-31 261.1 1.00000000
87614 7816 5370 2006-09-09 16400.0 0.98744695
88898 8046 5370 2006-09-13 3500.0 0.35329017
89874 5492 5370 2006-09-18 2700.0 0.25176754
94765 8756 5370 2006-10-07 19882.0 0.39233504
100277 5370 9105 2006-10-31 182.0 0.07167582
101587 9254 5370 2006-10-31 14.6 0.02390589
However, since my data has over 1 million rows, this code will take more than a day to complete(it runs for more than 12 hours and hasn't yet finished).
I had a similar running time problem here and I want to apply the same logic to this code. So, I modified my code as follows:
library(tnet)
closeness_fnc <- function(data){
accounts <- data[date == max(date),from]
id <- data[date == max(date),id]
# for directed networks
df <- data %>% group_by(from, to) %>% mutate(weights = sum(amount)) %>% select(from, to, weights) %>% distinct
cl <- closeness_w(df, directed = T, gconly=FALSE, alpha = 0.5)
closeness_directed <- cl[,"n.closeness"][accounts]
closeness_directed <- as.data.frame(closeness_directed)
closeness_directed$from <- rownames(closeness_directed)
rownames(closeness_directed) <- NULL
return(closeness_directed)
}
# this is the approach given in the link I provided:
setDT(data)[, date_minus_180 := date - 180]
data[, ':=' (closeness_directed = data[data, closeness_fnc(data),
on = .(from, date <= date, date >= date_minus_180), by = .EACHI]$closeness_directed
)] %>% select(-date_minus_180)
however, that won't work obviously since
data[data, closeness_fnc(data),
on = .(from, date <= date, date >= date_minus_180), by = .EACHI]
gives the output
from date date closeness_directed from
<chr> <date> <date> <dbl> <chr>
5370 2006-08-31 2006-03-04 0.07167582 5370
5370 2006-08-31 2006-03-04 0.02390589 9254
7816 2006-09-09 2006-03-13 0.07167582 5370
7816 2006-09-09 2006-03-13 0.02390589 9254
8046 2006-09-13 2006-03-17 0.07167582 5370
8046 2006-09-13 2006-03-17 0.02390589 9254
5492 2006-09-18 2006-03-22 0.07167582 5370
5492 2006-09-18 2006-03-22 0.02390589 9254
8756 2006-10-07 2006-04-10 0.07167582 5370
8756 2006-10-07 2006-04-10 0.02390589 9254
1-10 of 14 rows
So, now how can I adjust the code here to solve the problem?
A larger dataset
structure(list(id = c(19521L, 19522L, 19523L, 19524L, 19525L,
19526L, 19527L, 19528L, 19529L, 19530L, 19531L, 0L, 19532L, 19533L,
19534L, 21971L, 21972L, 21973L, 21974L, 21975L, 21976L, 21977L,
21978L, 21979L, 21980L, 21981L, 1L, 21761L, 21762L, 21763L, 21764L,
21765L, 21766L, 21767L, 21982L, 21983L, 21984L, 21768L, 21769L,
21770L, 21771L, 21772L, 21773L, 2L, 21774L, 21775L, 21776L, 21777L,
21778L, 21779L, 21780L, 21781L, 21782L, 3L, 21783L, 21784L, 21785L,
21786L, 21787L, 21788L, 21789L, 21790L, 21791L, 21792L, 21793L,
21794L, 21795L, 21796L, 4L, 21797L, 21798L, 21799L, 21800L, 21801L,
21802L, 21803L, 21804L, 21805L, 21806L, 21807L, 21808L, 21809L,
21810L, 21811L, 21812L, 21813L, 21814L, 21815L, 5L, 21816L, 21817L,
21818L, 21819L, 21820L, 21821L, 21822L, 21823L, 21824L, 21825L,
21826L, 21827L, 21828L, 21829L, 21830L, 6L, 21831L, 21832L, 21833L,
21834L, 21835L, 21836L, 21837L, 21838L, 7L, 21839L, 21840L, 21841L,
21842L, 21843L, 21844L, 21845L, 21846L, 21847L, 21848L, 21849L,
21850L, 21851L, 21852L, 21853L, 21854L, 21855L, 21856L, 21857L,
8L, 21858L, 21859L, 9L, 10L, 21860L, 21861L, 21862L, 21863L,
21864L, 21865L, 21866L, 21867L, 21868L, 21869L, 21870L, 21871L,
21872L, 21873L, 21874L, 21875L, 21876L, 21877L, 21878L, 21879L,
21880L, 21881L, 21882L, 21883L, 21884L, 21885L, 21886L, 21887L,
21888L, 21889L, 21890L, 21891L, 21892L, 21893L, 21894L, 21895L,
21896L, 21897L, 21898L, 21899L, 21900L, 11L, 21901L, 21902L,
21903L, 21904L, 21905L, 21906L, 21907L, 21908L, 21909L, 12L,
21910L, 21911L, 21912L, 21913L, 21914L, 21915L, 21916L, 21917L,
21918L, 21919L, 13L, 21920L, 21921L, 21922L, 21923L, 21924L,
21925L, 21926L, 21927L, 21928L, 21929L, 21930L, 21931L, 21932L,
21933L, 21934L, 21935L, 21936L, 14L, 21937L, 21938L, 21939L,
21940L, 21941L, 21942L, 21957L, 21958L, 21959L, 21960L, 21961L,
21962L, 21963L, 21964L, 15L, 21965L, 21966L, 21967L, 21968L,
21969L, 21970L, 21985L, 21986L, 21987L, 21988L, 21989L, 21990L,
21991L, 21992L, 21993L, 21994L, 21995L, 21996L, 16L, 17L, 21551L,
21552L, 21553L, 21554L, 21555L, 21556L, 21557L, 21558L, 21559L,
21560L, 21561L, 21562L, 21563L, 21564L, 21565L, 21566L, 21567L,
21997L, 21998L, 18L, 21568L, 21569L, 21570L, 21571L, 21572L,
21573L, 21574L, 21575L, 21576L, 21577L, 21578L, 21579L, 21580L,
21581L, 19L, 21582L, 21583L, 21584L, 21585L, 21586L, 21587L,
21588L, 21589L, 21590L, 21591L, 21592L, 20L, 21593L, 21594L,
21595L, 21596L, 21597L, 21598L, 21599L, 21600L, 21601L, 21602L,
21603L, 21604L, 21605L, 21606L, 21L, 21607L, 21608L, 21609L,
21610L, 21611L, 21612L, 21613L, 21614L, 21615L, 21616L, 21617L,
21618L, 21619L, 21620L, 21621L, 21622L, 21623L, 21624L, 21625L,
21626L, 22L, 21627L, 21628L, 21629L, 21630L, 21631L, 21632L,
21633L, 21634L, 21635L, 21636L, 21637L, 21638L, 21639L, 21640L,
21641L, 21642L, 21643L, 21644L, 21645L, 23L, 21646L, 21647L,
21648L, 21649L, 21650L, 21651L, 21652L, 21653L, 21654L, 21655L,
21656L, 21657L, 21658L, 24L, 21659L, 21660L, 21661L, 21662L,
21663L, 21664L, 21665L, 21666L, 21667L, 21668L, 21669L, 25L,
21670L, 21671L, 21672L, 21673L, 21674L, 21675L, 21676L, 21677L,
21678L, 21679L, 21680L, 21681L, 21682L, 21683L, 26L, 21684L,
21685L, 21686L, 21687L, 21688L, 21689L, 21690L, 21691L, 21692L,
21693L, 21694L, 21695L, 21696L, 21697L, 21698L, 21699L, 21700L,
21701L, 21702L, 21703L, 27L, 21704L, 21719L, 21720L, 21721L,
21722L, 21723L, 21724L, 21725L, 21726L, 21727L, 21728L, 21729L,
21730L, 21731L, 21732L, 28L, 21733L, 21734L, 21735L, 21736L,
21737L, 21738L, 21739L, 21740L, 29L, 21741L, 21742L, 21743L,
21744L, 21745L, 21746L, 21747L, 21748L, 21749L, 21750L, 21751L,
21752L, 21753L, 21754L, 21755L, 21756L, 21757L, 21758L, 30L,
31L, 32L, 33L, 34L, 35L, 36L, 37L, 21229L, 21230L, 21231L, 21232L,
21233L, 21234L, 21235L, 21236L, 21237L, 21238L, 21239L, 21240L,
21241L, 21242L, 21243L, 21244L, 21245L, 21246L, 21247L, 21248L,
21249L, 21250L, 21251L, 21252L, 21253L, 21254L, 21255L, 21256L,
21257L, 21258L), from = c("6644", "9843", "9242", "6753", "7075",
"8685", "5513", "6340", "6042", "5587", "7237", "5695", "9582",
"8539", "7939", "9077", "8946", "5591", "8380", "5865", "7867",
"9457", "6968", "7971", "6150", "9361", "9379", "8409", "9740",
"7226", "7531", "6752", "7362", "6661", "5730", "5417", "9049",
"7057", "6252", "9476", "6228", "8896", "7371", "8170", "7122",
"6694", "5450", "9435", "5619", "8289", "9862", "5504", "6555",
"9845", "7537", "9482", "6810", "8257", "8490", "6588", "9652",
"7303", "5852", "5746", "9198", "6917", "8688", "9460", "9640",
"7054", "8628", "7065", "9006", "6832", "6185", "8422", "6914",
"7069", "7848", "8436", "5494", "6375", "5653", "8912", "9794",
"8413", "6527", "9101", "5815", "6923", "8184", "6811", "8130",
"6539", "8643", "6329", "7744", "8211", "9641", "8003", "5599",
"8715", "7108", "9573", "8583", "5648", "6444", "5660", "8191",
"9830", "5931", "7921", "6753", "8314", "7940", "6265", "6604",
"6509", "5618", "5860", "6469", "9525", "5887", "6626", "7145",
"6862", "5741", "9144", "9862", "9163", "7297", "7599", "8427",
"8865", "9418", "8636", "6530", "9155", "6934", "8817", "9028",
"5521", "5943", "7443", "9557", "8239", "6819", "9761", "5983",
"6830", "6368", "5381", "8782", "8008", "9160", "9862", "8008",
"9615", "6920", "6164", "6278", "9729", "8960", "6358", "5939",
"8902", "9522", "7344", "9070", "6594", "8058", "6639", "7896",
"6325", "7804", "9554", "9725", "8475", "7746", "7536", "9671",
"9761", "5415", "6837", "8327", "9061", "8981", "9226", "5862",
"7085", "8925", "6226", "6849", "8432", "9545", "5837", "5440",
"9732", "8695", "7690", "5829", "9373", "7977", "6361", "7320",
"7603", "6303", "7077", "7850", "5792", "9588", "9204", "8648",
"8950", "7106", "6334", "6843", "7060", "9606", "5520", "9725",
"9350", "7463", "8130", "7947", "9668", "9490", "6241", "8830",
"6374", "9528", "7919", "8532", "6795", "6934", "8162", "9275",
"8106", "8615", "9206", "8283", "6265", "7052", "7737", "8422",
"7815", "9028", "7932", "6125", "6671", "7800", "9835", "5573",
"7874", "8931", "6748", "8192", "6822", "6950", "8020", "8555",
"8986", "7644", "5736", "8421", "6224", "8374", "8304", "9101",
"8677", "9208", "7008", "6074", "9409", "6269", "9721", "9304",
"9117", "5420", "9691", "7728", "8422", "8579", "7495", "9838",
"8139", "9571", "5385", "5454", "9620", "7723", "9249", "7033",
"7966", "5837", "9844", "5793", "5747", "6362", "6925", "9318",
"6780", "6934", "7150", "6818", "7246", "5514", "9574", "7838",
"5540", "6646", "6893", "6417", "8039", "8721", "8763", "6401",
"6510", "7970", "7117", "6001", "7505", "7646", "5600", "6522",
"8395", "5601", "5418", "6296", "8790", "7622", "9012", "8165",
"7624", "5468", "9316", "9030", "7155", "5702", "7492", "8503",
"9868", "6807", "6404", "9076", "7213", "8735", "7849", "8551",
"9351", "6693", "6795", "9653", "9504", "6948", "9358", "9280",
"8168", "5456", "9138", "8420", "9312", "8930", "6375", "8695",
"7699", "6748", "5506", "9475", "5776", "5517", "5644", "8680",
"5474", "7534", "9363", "9586", "6508", "6193", "5401", "8032",
"8461", "9387", "5812", "7564", "5917", "5434", "5794", "7840",
"9085", "8331", "7060", "7175", "6669", "8896", "6352", "7432",
"9810", "8776", "6934", "6112", "8869", "8248", "9450", "6974",
"7264", "7336", "6880", "7866", "7777", "7502", "5615", "9777",
"7371", "9214", "6374", "6039", "7714", "9056", "8358", "8963",
"8657", "8846", "9319", "7220", "7764", "8967", "8683", "9137",
"6971", "9747", "7449", "8259", "5373", "7300", "6273", "8391",
"7862", "5696", "6622", "5456", "9240", "7021", "7313", "7247",
"6679", "8102", "6812", "9473", "6345", "7935", "9696", "5541",
"8939", "5417", "6887", "8998", "7977", "9110", "8666", "6670",
"8975", "7518", "5601", "7549", "7841", "8888", "5808", "9545",
"9460", "9361", "9807", "6860", "9811", "5935", "8966", "8684",
"5915", "8892", "8493", "7894", "6342", "6382", "8461", "7833",
"7201", "7253", "6720", "6175", "9201", "5682", "5473", "7173",
"6094", "8810", "5874", "6947", "8462", "6885", "6201"), to = c("6934",
"9115", "9333", "8456", "6510", "7207", "6046", "7047", "6213",
"9493", "6248", "7468", "8925", "6727", "6912", "6727", "9811",
"9493", "9251", "6375", "6460", "6375", "8130", "5773", "6510",
"6951", "6213", "6671", "6153", "6634", "9440", "8220", "8512",
"8105", "8786", "5773", "6454", "5997", "8374", "7207", "6253",
"9251", "8456", "7517", "6935", "6143", "8220", "9628", "5837",
"9115", "6517", "9628", "8078", "6143", "6912", "7047", "6460",
"7517", "6442", "9333", "6646", "5997", "8395", "6153", "9012",
"6248", "7468", "8105", "6254", "9811", "7518", "6217", "6951",
"8551", "9012", "5605", "6671", "7084", "8925", "5985", "8130",
"5443", "8665", "8657", "8395", "6883", "6334", "8472", "6669",
"5715", "5409", "8876", "8869", "9450", "5610", "6934", "6043",
"7253", "6646", "7564", "6934", "5668", "6986", "7382", "6934",
"8671", "6646", "8336", "9750", "8967", "9137", "8912", "5373",
"9240", "6934", "8925", "6273", "6566", "6164", "9240", "6145",
"7247", "7134", "5606", "9682", "5635", "8820", "8763", "7492",
"5837", "6634", "8323", "6616", "6374", "8678", "7293", "6143",
"8105", "7843", "6375", "7207", "5997", "9628", "9240", "9811",
"5837", "8395", "8456", "9811", "9333", "9251", "6153", "6213",
"6248", "9115", "8925", "6634", "6671", "8130", "6646", "9333",
"6727", "6510", "6460", "8220", "9493", "9750", "6934", "6912",
"6951", "7047", "9012", "9750", "5773", "7517", "7468", "8456",
"7207", "6192", "9131", "6046", "7143", "7047", "6213", "6333",
"7603", "6248", "9620", "6995", "9770", "5835", "8925", "5614",
"8846", "8134", "7468", "8887", "8631", "9744", "9251", "6217",
"6934", "7247", "8697", "6727", "5606", "9664", "6460", "6442",
"8374", "6334", "9440", "9493", "9845", "7492", "5605", "8078",
"9202", "6454", "5635", "8657", "8606", "8395", "9037", "5773",
"6951", "6807", "9770", "8631", "9845", "8512", "6253", "6989",
"6375", "7248", "8665", "8786", "8887", "5668", "6374", "6883",
"9519", "8134", "6510", "5443", "6646", "6634", "5373", "7084",
"6033", "8967", "8105", "9565", "9723", "8925", "7222", "6361",
"8739", "8739", "6502", "9085", "5980", "5980", "5385", "5773",
"7001", "9200", "7603", "7471", "9620", "5610", "6794", "9457",
"8336", "6935", "5409", "5621", "5614", "9664", "7517", "7518",
"6669", "6517", "6114", "7207", "9628", "9251", "8456", "8078",
"6935", "6772", "9535", "8869", "7222", "7034", "6986", "6566",
"8220", "7155", "7446", "9202", "6934", "9333", "6046", "9535",
"8678", "6273", "6896", "7345", "9115", "8183", "6634", "6254",
"7471", "9628", "9333", "9457", "9457", "9137", "6043", "8671",
"6479", "6503", "5715", "7143", "5592", "6912", "7047", "6460",
"7517", "6143", "9712", "8472", "7382", "6995", "6192", "7518",
"6145", "8912", "6844", "7253", "7109", "8763", "5997", "5985",
"6807", "6153", "6329", "7213", "8551", "7564", "7155", "6248",
"7468", "8105", "5605", "6503", "8820", "5562", "8697", "7109",
"9811", "6984", "6951", "8323", "9450", "9012", "6616", "5922",
"9682", "9839", "8041", "5443", "9039", "8178", "7293", "8665",
"8657", "8846", "7990", "8168", "7646", "8472", "9803", "8041",
"8879", "9085", "8178", "7624", "8221", "5776", "8422", "9085",
"8545", "8321", "5473", "6994", "6673", "6934", "7769", "5409",
"6104", "8876", "7818", "8941", "5610", "7825", "7770", "6043",
"7253", "8790", "7564", "8178", "8846", "6954", "7382", "6986",
"6194", "8671", "9741", "5384", "8846", "8653", "6659", "9750",
"9744", "9138", "9321", "7124", "8912", "5866", "7718", "5468",
"7321", "6795", "6042", "6566", "6164", "9084", "6507", "9033",
"6807", "9240", "6540", "6857", "8945", "7134", "5606", "9390",
"9682", "6359", "8757", "8763", "8280", "7049", "6205", "7604",
"9729", "7492", "6085", "8239", "6299", "9845", "9240", "8323",
"6616", "6671", "6669", "8657", "7471", "9744", "5443", "5837",
"8395", "8551", "8456", "8472", "8374", "5610", "9811", "9682",
"9333", "9251", "9202", "7603", "6192", "6143", "6153", "6329",
"6213", "6273", "6248", "7109", "7143", "8041", "8665", "8925",
"9115", "6634", "6671"), date = structure(c(12784, 12784, 12784,
12784, 12785, 12785, 12786, 12786, 12786, 12786, 12786, 12787,
12787, 12787, 12787, 12788, 12788, 12788, 12788, 12789, 12789,
12790, 12790, 12790, 12790, 12790, 12791, 12791, 12791, 12791,
12791, 12791, 12791, 12791, 12791, 12791, 12791, 12792, 12792,
12792, 12792, 12792, 12792, 12793, 12793, 12793, 12793, 12793,
12794, 12794, 12794, 12794, 12794, 12795, 12795, 12795, 12795,
12795, 12795, 12795, 12795, 12796, 12796, 12796, 12796, 12796,
12796, 12796, 12797, 12797, 12797, 12797, 12797, 12797, 12797,
12797, 12798, 12798, 12799, 12800, 12800, 12800, 12801, 12801,
12801, 12802, 12802, 12802, 12803, 12803, 12804, 12804, 12804,
12804, 12804, 12805, 12805, 12805, 12805, 12805, 12806, 12806,
12806, 12806, 12807, 12807, 12807, 12807, 12807, 12807, 12808,
12808, 12808, 12809, 12809, 12809, 12809, 12809, 12809, 12809,
12810, 12810, 12810, 12810, 12810, 12811, 12811, 12811, 12811,
12812, 12812, 12812, 12812, 12813, 12813, 12813, 12814, 12814,
12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814,
12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814,
12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814,
12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814, 12814,
12814, 12814, 12814, 12815, 12815, 12816, 12816, 12816, 12816,
12816, 12816, 12816, 12816, 12816, 12816, 12817, 12817, 12817,
12817, 12817, 12817, 12817, 12818, 12818, 12818, 12818, 12819,
12819, 12819, 12819, 12819, 12819, 12819, 12819, 12819, 12819,
12819, 12819, 12819, 12819, 12819, 12819, 12819, 12819, 12820,
12820, 12820, 12820, 12820, 12820, 12820, 12820, 12820, 12820,
12820, 12820, 12820, 12820, 12820, 12821, 12821, 12821, 12821,
12821, 12821, 12821, 12821, 12821, 12821, 12821, 12821, 12821,
12821, 12821, 12821, 12821, 12821, 12821, 12822, 12822, 12822,
12822, 12822, 12822, 12822, 12822, 12822, 12822, 12822, 12822,
12822, 12822, 12822, 12822, 12822, 12822, 12822, 12822, 12822,
12823, 12823, 12823, 12823, 12823, 12823, 12823, 12823, 12823,
12823, 12823, 12823, 12823, 12823, 12823, 12824, 12824, 12824,
12824, 12824, 12824, 12824, 12824, 12824, 12824, 12824, 12824,
12825, 12825, 12825, 12825, 12825, 12825, 12825, 12825, 12825,
12825, 12825, 12825, 12825, 12825, 12825, 12826, 12826, 12826,
12826, 12826, 12826, 12826, 12826, 12826, 12826, 12826, 12826,
12826, 12826, 12826, 12826, 12826, 12826, 12826, 12826, 12826,
12827, 12827, 12827, 12827, 12827, 12827, 12827, 12827, 12827,
12827, 12827, 12827, 12827, 12827, 12827, 12827, 12827, 12827,
12827, 12827, 12828, 12828, 12828, 12828, 12828, 12828, 12828,
12828, 12828, 12828, 12828, 12828, 12829, 12829, 12830, 12830,
12830, 12830, 12830, 12830, 12831, 12831, 12831, 12831, 12831,
12831, 12832, 12832, 12832, 12832, 12832, 12832, 12832, 12832,
12833, 12833, 12833, 12833, 12833, 12833, 12833, 12834, 12834,
12834, 12834, 12834, 12834, 12834, 12834, 12834, 12834, 12834,
12835, 12835, 12835, 12835, 12835, 12836, 12836, 12836, 12836,
12836, 12837, 12837, 12837, 12837, 12837, 12837, 12837, 12837,
12837, 12837, 12838, 12838, 12838, 12838, 12838, 12838, 12839,
12839, 12839, 12839, 12839, 12839, 12839, 12839, 12839, 12840,
12840, 12840, 12840, 12840, 12840, 12840, 12841, 12841, 12841,
12841, 12841, 12841, 12841, 12841, 12841, 12841, 12841, 12841,
12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842,
12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842,
12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842,
12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842, 12842,
12842, 12842), class = "Date"), amount = c(700, 900, 1000, 600,
400, 1100, 600, 1100, 200, 800, 1000, 700, 300, 800, 800, 5123,
400, 3401, 700, 500, 700, 3242, 500, 400, 5298, 900, 11832, 300,
500, 600, 1100, 600, 300, 800, 400, 6774, 300, 200, 400, 14264,
900, 13851, 17366, 1000, 800, 700, 6007, 500, 400, 6207, 900,
12644, 800, 4276, 6434, 14779, 4507, 6446, 800, 17477, 1100,
5009, 1000, 5718, 800, 13967, 6959, 15914, 200, 4470, 600, 800,
10737, 700, 44749, 1000, 46552, 500, 13156, 1000, 23323, 1100,
200, 300, 10792, 200, 400, 700, 200, 700, 1100, 1000, 700, 500,
1100, 7268, 300, 200, 16125, 400, 14440, 700, 900, 300, 49752,
200, 36518, 500, 900, 300, 900, 1000, 200, 19961, 21899, 12336,
1100, 200, 700, 1100, 900, 1100, 800, 600, 400, 200, 500, 200,
200, 38000, 16983, 1000, 300, 1000, 300, 800, 13.4, 42.7, 34700,
12.6, 47.5, 13.3, 37.1, 17, 11.1, 15.5, 22.2, 55.8, 11.8, 50.1,
45, 15.9, 38.8, 38.2, 20.1, 38.9, 7.1, 107.1, 48, 62.4, 2900,
21.5, 19.1, 14, 19.5, 15.2, 5282, 94.7, 19.4, 28.2, 42.7, 110.2,
0.8, 23.1, 20, 19.6, 2000, 5100, 1100, 200, 11900, 1100, 5500,
7500, 1100, 800, 6000, 200, 600, 800, 25300, 45647, 1000, 700,
600, 7000, 700, 900, 300, 2900, 5224, 30192, 24381, 400, 5123,
23330, 700, 8500, 3191, 23041, 5029, 6238, 3401, 900, 20213,
7618, 19935, 600, 5859, 3375, 12817, 500, 38645, 1600, 10600,
5500, 700, 3217, 14626, 4550, 4356, 6689, 600, 3242, 9612, 5080,
5039, 12785, 4212, 17632, 3395, 200, 3399, 5298, 14493, 28157,
1800, 31348, 5544, 14100, 33045, 1800, 200, 800, 20066, 400,
1000, 27666, 500, 600, 700, 700, 3151, 1000, 6774, 800, 1500,
22452, 1100, 44333, 18347, 200, 600, 6242, 13900, 19746, 400,
48098, 7041, 9100, 10584, 49590, 3021, 500, 14264, 5400, 13851,
17366, 1200, 5072, 1100, 1100, 47831, 12015, 5200, 8905, 23524,
6007, 1000, 300, 22349, 31038, 25200, 43737, 12154, 23736, 24863,
400, 200, 6207, 29700, 14622, 4758, 5810, 12644, 17477, 19588,
27078, 32594, 25609, 20281, 700, 900, 6310, 14319, 14400, 6434,
14779, 4507, 6446, 4276, 9600, 13875, 12043, 4391, 4327, 9000,
6698, 16392, 700, 15263, 1100, 18729, 5009, 3098, 4729, 5718,
700, 500, 24400, 9658, 14963, 13967, 6959, 15914, 9800, 20567,
3058, 600, 18497, 6148, 4470, 400, 10737, 15447, 24009, 44749,
12138, 900, 800, 1000, 900, 4200, 700, 1100, 1300, 8000, 6000,
29511, 200, 900, 600, 6600, 1100, 44162, 600, 24023, 900, 400,
200, 300, 800, 33410, 14800, 400, 800, 500, 500, 19136, 33900,
4100, 10500, 13400, 600, 700, 3700, 1000, 1000, 100, 3300, 800,
9400, 45925, 41740, 500, 6200, 8000, 200, 3100, 500, 300, 31332,
62100, 600, 7100, 28361, 4000, 200, 4500, 900, 900, 900, 1000,
1500, 300, 2500, 2700, 11000, 300, 800, 900, 8900, 23990, 1100,
1400, 800, 10700, 1800, 1100, 10900, 900, 200, 5200, 800, 200,
800, 200, 900, 3900, 900, 600, 900, 18.7, 102, 2.9, 3, 39285,
52.1, 34.1, 18.5, 21.3, 38.3, 160, 110.5, 58.6, 83.4, 34.7, 68.6,
31, 20.3, 5.4, 89.3, 110.6, 61.5, 72.7, 13.7, 20.7, 25.9, 2.9,
50.1, 14, 110, 16.2, 39, 73.8, 23.7, 249, 29.6, 117.3, 199)), row.names = c(NA,
-500L), class = "data.frame")
from Recent Questions - Stack Overflow https://ift.tt/348AqzQ
https://ift.tt/eA8V8J
Comments
Post a Comment